首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87156篇
  免费   7971篇
  国内免费   5076篇
电工技术   3532篇
技术理论   4篇
综合类   9465篇
化学工业   12040篇
金属工艺   6341篇
机械仪表   5254篇
建筑科学   18617篇
矿业工程   3408篇
能源动力   2234篇
轻工业   4710篇
水利工程   2330篇
石油天然气   4252篇
武器工业   876篇
无线电   5289篇
一般工业技术   9531篇
冶金工业   3437篇
原子能技术   529篇
自动化技术   8354篇
  2024年   172篇
  2023年   1176篇
  2022年   2183篇
  2021年   2567篇
  2020年   2530篇
  2019年   2063篇
  2018年   1947篇
  2017年   2458篇
  2016年   2626篇
  2015年   2866篇
  2014年   5353篇
  2013年   4492篇
  2012年   6015篇
  2011年   6720篇
  2010年   5215篇
  2009年   5654篇
  2008年   5128篇
  2007年   6085篇
  2006年   5571篇
  2005年   4840篇
  2004年   3990篇
  2003年   3593篇
  2002年   3043篇
  2001年   2530篇
  2000年   2125篇
  1999年   1763篇
  1998年   1377篇
  1997年   1170篇
  1996年   894篇
  1995年   784篇
  1994年   741篇
  1993年   486篇
  1992年   448篇
  1991年   353篇
  1990年   289篇
  1989年   198篇
  1988年   153篇
  1987年   78篇
  1986年   60篇
  1985年   72篇
  1984年   53篇
  1983年   54篇
  1982年   65篇
  1981年   21篇
  1980年   63篇
  1979年   14篇
  1978年   11篇
  1976年   9篇
  1975年   11篇
  1959年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Graphite–SiC micro-composites have been prepared in–house by carbothermal reduction process. Controlling the process parameters including the weight ratio of SiO2 to graphite as well as carbothermal reduction temperature during the micro-composite preparation favors the homogeneous formation of SiC with preferred morphologies like ribbons and whiskers/fibers. The micro-composite modified low carbon MgO-C refractories have exhibited significantly improved bulk properties over the standard composition. To understand the beneficial role of SiC reinforcement on hot strength performance under air oxidizing conditions, we propose a scaling parameter known as strength factor (fs) based on the ratio of hot strength (HMOR) to cold strength (CCS). Correlating the strength factor data (fs) with oxidative damage provides new insights into the reinforcing effects of distinct SiC morphologies in this new class of micro-composite fortified refractory systems over the standard compositions.  相似文献   
62.
《Ceramics International》2022,48(12):17104-17115
This study reports on the early hydration properties and microstructure evolutions of MgO-activated slag at five curing temperatures (20 °C, 40 °C, 50 °C, 60 °C, and 80 °C) and three MgO types (S-MgO, M ? MgO, and R-MgO). The results indicated that high-temperature curing substantially increased the compressive strength of the specimens. Particularly, the highest strength was obtained at 40 °C and 60 °C for the S-MgO and M-MgO-activated slag specimens, respectively, and the high curing temperature for the R-MgO-activated slag specimen was 40 °C. We focused on the relationship between the mechanical properties, pore structure characteristics, and hydration products. The combination of calcium-silicate-hydrate (C-S-H) gel and Al increased under high-temperature curing conditions. XRD, FT-IR, TG-DTG, and 27Al MAS-NMR results showed a high Al content in the formation of calcium silicate hydrate with Al in its structure (C-A-S-H gel) for the R-MgO-activated slag pastes under high-temperature curing; however, the microstructure was loose owing to the formation of excessive brucite. For the S-MgO-activated slag specimen, the Ca/Si ratio was high, with more Mg2+ penetrating the C-S-H gel interlayer, forming more hydrotalcite-like phases and increasing the chain length of the C-S-H gel. The microstructure showed good compatibility of the hydration products interweaving to form dense microstructures.  相似文献   
63.
《Ceramics International》2022,48(1):446-454
Readily oxidization of magnetic particles is a common drawback of these type of materials which reduce their electromagnetic wave dissipation performance. In this study, the magnetic core-double shells structured (Ni/SiO2/Polyaniline) composite has been developed for protection of the core from oxidation and in consequent improvement the complex permittivity. Solvothermal and in-situ polymerization methods were utilized for decorating Ni micro-particles with SiO2 and conductive polyaniline polymer respectively. All physico-chemical, magnetic and electromagnetic features were evaluated via XRD, FTIR, XPS, FESEM, VSM and VNA analysis. The double shells composite possesses significant performance in terms of reflection loss and effective absorption bandwidth. The results reveal that the maximum dissipation capacity of the double shells composite is – 32.5 dB at 16.5 GHz with 4.5 GHz effective absorption bandwidth and 1.5 mm thickness. Enhancement in microwave dissipation features are arises from synergistic influence of various phenomena such as interfacial polarization, multiple Debye relaxation, natural ferromagnetic resonance and proper impedance matching characteristic. Overall, developing double shells structure on magnetic Ni microsphere particles had a meaningful effect on tuning the microwave absorption performance.  相似文献   
64.
The structure of mold flux glasses in the system CaO-(Na,Li)2O-SiO2-CaF2 with unusually high modifier contents, stabilized by the addition of ∼4 mol% B2O3, is studied using 7Li, 23Na, 19F, 11B, and 29Si magic-angle-spinning (MAS), and 7Li{19F} and 23Na{19F} rotational echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. When taken together, the spectroscopic results indicate that the structure of these glasses consists primarily of dimeric [Si2O7]−6 units that are linked to the (Ca,Na,Li)-O coordination polyhedra, and are interspersed with chains of corner-shared BO3 units. The F atoms in the structure are exclusively bonded to Ca atoms, forming Ca(O,F)n coordination polyhedra. This structural scenario is shown to be consistent with the crystallization of cuspidine (3CaO·2SiO2·CaF2) from the parent melts on slow supercooling. The progressive addition of Li to a Na-containing base composition results in a corresponding increase in the undercooling required for the nucleation of cuspidine in the melt, which is attributed to the frustrated local structure caused by the mixing of alkali ions.  相似文献   
65.
In lead optimization, protein crystallography is an indispensable tool to analyze drug binding. Binding modes and non-covalent interaction inventories are essential to design follow-up synthesis candidates. Two protocols are commonly applied to produce protein–ligand complexes: cocrystallization and soaking. Because of its time and cost effectiveness, soaking is the more popular method. Taking eight ligand hinge binders of protein kinase A, we demonstrate that cocrystallization is superior. Particularly for flexible proteins, such as kinases, and larger ligands cocrystallization captures more reliable the correct binding pose and induced protein adaptations. The geometrical discrepancies between soaking and cocrystallization appear smaller for fragment-sized ligands. For larger flexible ligands that trigger conformational changes of the protein, soaking can be misleading and underestimates the number of possible polar interactions due to inadequate, highly impaired positions of protein amino-acid side and main chain atoms. Thus, if applicable cocrystallization should be the gold standard to study protein–ligand complexes.  相似文献   
66.
彭帆  曾毅 《无机材料学报》2021,36(11):1193-1198
电子背散射衍射(Electron Backscatter Diffraction, EBSD)是研究材料显微结构的重要手段之一, 通过EBSD获取的菊池衍射花样是材料内部微观晶体结构的直观反映。本研究通过识别菊池花样中的对称轴, 结合晶体对称定律, 提出了一种利用菊池花样进行晶体对称性分析和晶体结构鉴定的方法。通过该方法成功对三个未知样品的对称性和晶体结构进行了判断。其中一个样品确定到所属晶系, 另两个样品锁定到部分点群, 通过确定晶系和点群排除了部分不符合对称性的相鉴定结果。研究结果表明, 利用菊池花样进行对称性分析是判断晶体结构的有效方法。同现有方法相比, 菊池衍射花样法大大缩小了相鉴定的检索范围, 显著提高了相鉴定的准确性和可靠性, 是一种有望用于新一代EBSD设备的标定技术。  相似文献   
67.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
68.
β(1,3)-glucans are a component of fungal and plant cell walls. The β-glucan of pathogens is recognized as a non-self-component in the host defense system. Long β-glucan chains are capable of forming a triple helix structure, and the tertiary structure may profoundly affect the interaction with β-glucan-binding proteins. Although the atomic details of β-glucan binding and signaling of cognate receptors remain mostly unclear, X-ray crystallography and NMR analyses have revealed some aspects of β-glucan structure and interaction. Here, we will review three-dimensional (3D) structural characteristics of β-glucans and the modes of interaction with β-glucan-binding proteins.  相似文献   
69.
吕良 《模具制造》2021,(4):47-49
分析了汽车加油口塑件结构,确定了注射成型方案、进胶方式,并介绍了通过滑块与开模动作配合实现塑件脱模的过程。  相似文献   
70.
The development of materials in two-dimensions has been established as an effective approach to improve their thermoelectric performance for renewable energy production. In this article, we generated monolayers of the orthorhombic structured lead-chalcogenides PbX (X = S, Se, and Te) for room-temperature thermoelectric applications. The Density functional theory and semiclassical Boltzmann transport theory-based computational approaches have been adopted to carry out this study. The band structures of PbX monolayers exhibited narrow indirect bandgaps with a large density of states corresponding to their bandgap edges. Accordingly, substantial electrical conductivities and Seebeck coefficients have been obtained at moderate level doping that has caused significant thermoelectric power factors (PFs) and figures-of-merit (zT) ~1. The single-layered PbX showed anisotropic dispersion of electronic states in the band structure. A relatively lighter effective mass of charge carriers has been extrapolated from the bands oriented in the y-direction than that of the x-direction. As a result, the electrical conductivities and PFs have been observed larger in the y-direction. The optimum PFs recorded for single-layered PbS, PbSe, and PbTe in y-direction amounts to 9.90 × 1010 W/mK2s at 1.0 eV, 10.40 × 1010 W/mK2s at 0.82 eV, and 10.80 × 1010 W/mK2s 0.66 eV respectively. Moreover, a slight increase in p-type doping is found to improve the x-component of the PF, whereas n-type doping has led to improvement in the y-component of PF. Our results show an improved thermoelectric response of PbX monolayer (PbTe in particular) than their bulk counterparts reported in the literature, which indicates the promise of PbX monolayers for nanoscale thermoelectric applications at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号